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Abstract

In this paper we review the variational approach to radial basis function interpolation on

the sphere and establish new Lp-error bounds, for pA½1;N�: These bounds are given in terms

of a measure of the density of the interpolation points, the dimension of the sphere and the

smoothness of the underlying basis function.
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1. Introduction

Many applications lead to problems of interpolating values fi of an unknown

function f at scattered locations xiARd where i ¼ 1;y;N: One of the most
promising ways of solving this problem is to employ radial basis functions. The most
general radial basis function (RBF) interpolant takes the form

sðxÞ ¼
XN

j¼1
ljfðdðx; xjÞÞ þ pðxÞ; ð1:1Þ
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where dðx; yÞ ¼ jjx 	 yjj is usually the Euclidean metric, p is a d-dimensional
polynomial of suitable degree and f : ½0;NÞ-R is the RBF. The real coefficients
flj : j ¼ 1;y;Ng and the polynomial p (if required) are chosen so that sðxiÞ ¼ fi

(1pipN).
Since the early 1990s progress in the interpolation theory of RBFs has been

phenomenal. Encouraging theoretical findings regarding uniqueness, accuracy and
stability have been discovered alongside ingenious numerical algorithms for practical
implementation. For an excellent account of this material we recommend the
textbook [2].
In this paper we are interested in examining how the RBF method can be used to

solve the following spherical interpolation problem.

Problem. Let X ¼ fxigN
i¼1 denote a set of distinct points located on the unit sphere

Sd	1CRd and let f ðxiÞ denote the corresponding values of an unknown target function

f : Sd	1-R: Find a continuous function sf : Sd	1-R which satisfies the following

interpolation conditions:

sf ðxiÞ ¼ f ðxiÞ; i ¼ 1;y;N: ð1:2Þ

One way to attack this problem is to apply the RBF method directly. This is a
perfectly valid approach, however it does not take into account the fact that the data

points lie on a ðd 	 1Þ-dimensional surface embedded in Rd : A more illuminating
approach is to specialise the method to the sphere. Specifically, we exchange the
Euclidean metric for the geodesic metric defined by

gðx; ZÞ ¼ cos	1ðxTZÞ; for x; ZASd	1: ð1:3Þ
In addition we replace the RBF f : ½0;NÞ-R with a zonal basis function (ZBF)
c : ½0; p�-R; and, as a first step, we seek a basic interpolant of the form

sðxÞ ¼
XN

j¼1
aicðgðx; xjÞÞ; xASd	1: ð1:4Þ

In Section 2 of this paper we address the solvability of the spherical interpolation
problem using ZBFs. Specifically, we briefly review the necessary functional analysis
for the sphere and then, we introduce the class of strictly positive definite functions
for the sphere. This class serves as a useful source of applicable basis functions for
which a unique ZBF interpolant is guaranteed. Taking the RBF analogy one step
further we dispense with the notion of polynomial reproduction and replace it with
spherical harmonic polynomial reproduction, whereby we augment the basic ZBF
interpolant by adding a spherical harmonic of a suitable degree. This leads us to
introduce classes of conditionally strictly positive definite functions for the sphere,
which again provide unique ZBF interpolants. To close Section 2 we demonstrate
how each of the ZBF interpolants may also be viewed as the unique solution to a
certain variational or minimal norm interpolation problem. We highlight the
usefulness of this variational view by mentioning a pointwise error estimate which is
a minor modification of the result found in [6].
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Section 3 of the paper is devoted to convergence theory. If X ¼ fxigN
i¼1 denotes a

set of scattered points on Sd	1 then we measure the distribution of the X by using the
geodesic mesh norm

h ¼ sup
xASd	1

min
xiAX

gðx; xiÞ: ð1:5Þ

In general, we aim to provide bounds of the form

jjsf 	 f jjLpðSd	1ÞpBðhÞjjf jj; pA½1;N�;

where f is measured in a suitable Sobolev-type norm and where BðhÞ is a function

converging to zero as h-0; that is as the set X becomes denser in Sd	1: Our
approach is to revisit an old strategy originally used by Duchon [4] in his
investigation of the accuracy of surface splines interpolants. In [14], Light and
Wayne demonstrate how the Duchon strategy can be modified to provide error
estimates for the more general case of RBF interpolation; see also [21]. In our
companion paper [10] we have modified the Duchon strategy further so that it can
work on the sphere. We rely on this framework together with the variational view of
ZBF interpolation to provide new interpolation error estimates for sufficiently
smooth target functions.

2. The zonal basis function method

2.1. Background

We begin by introducing spherical harmonics, which are the spherical analogue of
classical polynomials. A good reference for this material is [17]. A spherical

harmonic of order k on Sd	1 is the restriction to Sd	1 of a d-dimensional

homogeneous harmonic polynomial of degree k: We let H�
kðSd	1Þ denote the space

of spherical harmonics of order k on Sd	1: This space has a useful intrinsic

characterisation. If we let Dd	1 denote the Laplace–Beltrami operator on Sd	1 then
the eigenvalues for the eigenvalue problem

ðDd	1 þ lÞu ¼ 0 ð2:1Þ

are lk ¼ kðk þ d 	 2Þ kX0; and H�
kðSd	1Þ is precisely the eigenspace of Dd	1

corresponding to lk: The dimension Nk;d of H�
kðSd	1Þ is given by the multiplicity of

lk in (2.1), specifically

N0;d ¼ 1; and Nk;d ¼ 2k þ d 	 2

k

k þ d 	 3

k 	 1

� �
; kX1:

Given an orthonormal basis fYk;l : l ¼ 1;y;Nk;dg for H�
kðSd	1Þ the collection

fYj;l : l ¼ 1;y;Nj;d : j ¼ 0; 1;y; kg
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is an orthonormal basis for the space of spherical harmonics of order at most k;

which we denote by HkðSd	1Þ: Furthermore, the collection

fYj;l : l ¼ 1;y;Nj;d : jX0g

forms an orthonormal basis for L2ðSd	1Þ: According to the celebrated Addition
Theorem

Pk;dðxTZÞ :¼ od	1
Nk;d

XNk;d

l¼1
Yk;lðxÞYk;lðZÞ; x; ZASd	1; ð2:2Þ

where Pk;d is the d-dimensional Legendre polynomial of degree k; and where od	1
denotes the surface area of Sd	1:
Spherical harmonics can be used to give a ‘‘Fourier analysis’’ for the sphere. In

particular, every function fAL2ðSd	1Þ has an associated Fourier series

f ¼
XN
k¼0

XNk;d

l¼1
f̂k;lYk;l : ð2:3Þ

The Fourier coefficients are obtained by

f̂k;l ¼
Z

Sd	1
f ðxÞYk;lðxÞ dSðxÞ; ð2:4Þ

where dS represents a surface element of Sd	1: The square of the L2ðSd	1Þ-norm of f

is given by

jjf jj2L2ðSd	1Þ ¼
Z

Sd	1
jf ðxÞj2 dSðxÞ ¼

XN
k¼0

XNk;d

l¼1
jf̂k;l j2; ð2:5Þ

where the second equality is Parseval’s identity.

For a real number bX0 the Sobolev space W
b
2 ðSd	1Þ of order b is defined as

fAL2ðSd	1Þ : jjf jj2
W

b
2
ðSd	1Þ ¼

XN
k¼0

XNk;d

l¼1
ð1þ lkÞbjf̂k;l j2oN

( )
: ð2:6Þ

The Sobolev embedding theorem holds true on the sphere. The theorem asserts that

whenever b4d	1
2

then W
b
2 ðSd	1Þ is continuously embedded in CðSd	1Þ:

The numbers lk ¼ kðk þ d 	 2Þ are the eigenvalues of the Laplace–Beltrami

operator, which behave like k2 for large k:

Remark 2.1. Let fĉkgNk¼0 denote a sequence of positive real numbers for which there
exists positive constants c and C such that

c

ð1þ kÞ2b
pĉkp

C

ð1þ kÞ2b
; kX0; b40:
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Then the space

fAL2ðSd	1Þ : jjf jj2b ¼
XN
k¼0

XNk;d

l¼1

jf̂k;l j2

ĉk

oN

( )

is norm equivalent to the Sobolev space (2.6).

2.2. Interpolating with basis functions

In order to solve the spherical interpolation problem we propose the use of
zonal basis functions and so we seek a basic interpolant with the form (1.4).
Applying the interpolation conditions (1.2) we can deduce that the real coefficients
fai : i ¼ 1;y;Ng can be uniquely determined if and only if the interpolation
matrix

Aij ¼ cðgðxi; xjÞÞ; 1pi; jpN ð2:7Þ

is non-singular,

Definition 2.2. A continuous function c : ½0; p�-R is said to be strictly positive

definite on Sd	1 ðcASPDðSd	1ÞÞ if, for any set X ¼ fxigN
i¼1 of distinct points on

Sd	1; the quadratic form

aT Aa ¼
XN

j¼1

XN

k¼1
ajakcðgðxj; xkÞÞ ð2:8Þ

is positive on RN
\f0g:

If we choose cASPDðSd	1Þ; then the resulting interpolant (1.4) is unique since the
corresponding interpolation matrix is, by definition, positive definite and hence non-
singular.
Frequently one requires that an interpolant should reproduce the low order

spherical harmonics. The ZBF interpolant s; given by (1.4), does not have this
property and so it is often convenient to add to s a spherical harmonic of order k;
which gives the form

sðxÞ ¼
XN

j¼1
ajcðgðx; xjÞÞ þ

XM
j¼1

bjYjðxÞ; xASd	1; ð2:9Þ

where M ¼ dimHkðSd	1Þ; and fY1;y;YMg is a basis for HkðSd	1Þ:
The interpolation conditions (1.2) now provide N linear equations in N þ M

unknowns. In such cases it is usual to assume that NXM and to impose M moment
conditions on the fai : i ¼ 1;y;Ng to take up the extra degrees of freedom.
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Specifically, we use the equations

XN

j¼1
ajcðgðxi; xjÞÞ þ

XM
j¼1

bjYjðxiÞ ¼ f ðxiÞ; 1pipN;

XN

j¼1
ajYiðxjÞ ¼ 0; 1pipM: ð2:10Þ

Definition 2.3. For any set X ¼ fxigN
i¼1 of distinct data points on Sd	1 we consider

the following subspace:

Wm	1 ¼ aARN :
XN

i¼1
aiYðxiÞ ¼ 0 for all YAHm	1ðSd	1Þ

( )
: ð2:11Þ

A continuous function c : ½0; p�-R is said to be conditionally strictly positive

definite of order mAN on Sd	1; ðcACSPDmðSd	1ÞÞ if the quadratic form (2.8) is
positive on Wm	1\f0g:

Any function cACSPDmðSd	1Þ can be used to provide an augmented ZBF
interpolant of the form (2.9) with k ¼ m 	 1: However, in order to guarantee the
uniqueness of such a solution we require that the interpolation points satisfy the
following geometric condition.

Spherical harmonic unisolvency. Let mAN and set M ¼ dimHm	1ðSd	1Þ: A set of

distinct points X ¼ fxigM
i¼1 is said to be Hm	1ðSd	1Þ-unisolvent if the only element of

Hm	1ðSd	1Þ to vanish at each xi is the zero spherical harmonic.

If cACSPDmðSd	1Þ and the interpolation points X ¼ fxigN
i¼1 contain an

Hm	1ðSd	1Þ-unisolvent subset, then the interpolant of the form (2.9) is unique [13].
Using the work of Schoenberg [20], and extensions thereof [5], we can formulate

the following theorem.

Theorem 2.4. If cACSPDmðSd	1Þ; then it has the following form:

cðyÞ ¼
XN
k¼0

akPk;dðcos yÞ; ð2:12Þ

where

akX0 for kXm and
XN
k¼0

akoN; ð2:13Þ

where fPk;dg denote the d-dimensional Legendre polynomials.

Remark 2.5. (i) In view of Theorem 2.4 we choose to consider each ZBF as a

function of the inner product, xTZ; since cosðgðx; ZÞÞ ¼ xTZ:
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(ii) Throughout this paper we shall take cACSPD0ðSd	1Þ to mean cASPDðSd	1Þ:
Further, if cACSPDmðSd	1Þ with m40; then we shall assume without loss that
ak ¼ 0 for 0pkpm 	 1:

The complete characterisation of the class of functions of the form (2.12)

satisfying (2.13) that are CSPDmðSd	1Þ has been investigated by several researchers
see [15,18,19]. The most recent result is due to Chen et al. [3] who show that, for
dX3; a necessary and sufficient condition is that the set fkAN0\f0; 1;y;m 	 1g :
ak40g must contain infinitely many odd and infinitely many even integers. The case
of d ¼ 2 remains an open problem and so we will only consider basis functions

cACSPDmðSd	1Þ for which ak40 for kXm:

2.3. A variational theory

For every cACSPDmðSd	1Þ we can associate a zonal kernel Cðx; ZÞ ¼ cðxTZÞ:
This, in turn, has a unique spherical Fourier expansion, given by

Cðx; ZÞ ¼
XN
k¼m

XNk;d

l¼1
ĉkYk;lðxÞYk;lðZÞ; ð2:14Þ

where the ĉk denote the spherical Fourier coefficients of C: These are related, via the
addition theorem, to the Legendre coefficients of c by ĉk ¼ akod	1=Nkd :
Furthermore, each sequence fĉkgkXm possesses a certain decay rate as k-N: In

particular, we say that c has a-Fourier decay if there exists positive constants A1;A2

such that

A1ð1þ kÞ	ðd	1þaÞpĉkpA2ð1þ kÞ	ðd	1þaÞ; a40; kXm: ð2:15Þ

Definition 2.6. Let cACSPDmðSd	1Þ and let fĉkgkXm denote the spherical Fourier

coefficients of its associated zonal kernel (2.14). We define the native space of c to be

Hc;m :¼ fAL2ðSd	1Þ : jf j2c;m ¼
XN
k¼m

XNk;d

l¼1

jf̂k;l j2

ĉk

oN

( )
; ð2:16Þ

where j � jc;m is a (semi-)norm induced via the (semi-)inner product

ðf ; gÞc;m ¼
XN
k¼m

XNk;d

l¼1

f̂k;l ĝk;l

ĉk

: ð2:17Þ

If m ¼ 0 then j � jc;0 is a norm which we rewrite as jj � jjc: Indeed, if c has a-Fourier
decay, then Remark 2.1 allows us to deduce that Hc;0 is norm equivalent to the

Sobolev space W
b
2 ðSd	1Þ where b ¼ d	1þa

2 :

If m40; then j � jc;m is a semi-norm and has Hm	1ðSd	1Þ as its null space.

However, if we assume that fx1;y; xMg is aHm	1ðSd	1Þ-unisolvent set, then we can
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consider a new bilinear form

/f ; gSc ¼
XM
i¼1

f ðxiÞgðxiÞ þ ðf ; gÞc;m; f ; gAHc;m: ð2:18Þ

With this in place we notice that 0 ¼ /f ; fSc if and only if fAHm	1ðSd	1Þ andPM
i¼1 f ðxiÞ2 ¼ 0; that is, if and only if f ¼ 0: Thus, /�; �Sc is a genuine inner product

for Hc;m: Furthermore, the space Hc;m is complete with respect to the norm induced

by /�; �Sc [13]. This allows us to consider the following new definition.

Definition 2.7. Let m40 and let cACSPDmðSd	1Þ: We define the normed native
Hilbert space of c by

Hc ¼ ffAL2ðSd	1Þ : jjf jjcoNg; ð2:19Þ

where jj � jjc is the norm induced by the inner product (2.18).

Before we discuss the importance of the native space we provide the following
observation which will prove useful in Section 3, where we analyse the accuracy of
the ZBF interpolants.

Observation 2.8. If the basis function c has a-Fourier decay then we can use Remark

2.1, and the fact that all norms are equivalent on finite dimensional spaces, to deduce

that Hc is norm equivalent to W
b
2 ðSd	1Þ; where b ¼ d	1þa

2
: That is, there exists

constants 0okeqoKeq; such that

keqjj � jjWb
2
ðSd	1Þpjj � jjcpKeqjj � jjWb

2
ðSd	1Þ: ð2:20Þ

In particular, we can use the Sobolev embedding theorem to conclude that Hc is a

Hilbert space of continuous functions.

The importance of the native space of a basis function cASCPDmðSd	1Þ is well
illustrated by Levesley et al. [13], where it is shown that, given any fAHc; the

solution to the following variational problem:

minimise fjjsjjc : sAHc and sðxiÞ ¼ f ðxiÞ 1pipNg; ð2:21Þ

is precisely the unique c-based ZBF interpolant. This variational problem is
precisely the same as finding the optimal interpolant in a Hilbert space, such
problems are well understood and were studied in the late 1950s by Golomb and
Weinberger [7]. The real power of the variational approach lies in the fact that the
original Hilbert space techniques from [7] can be applied to provide useful pointwise
error bounds. Specifically, for a given fAHc; the error of its c-based ZBF

interpolant sf can be bounded by an estimate of the form

jsf ðxÞ 	 f ðxÞjpPcðxÞ � jjsf 	 f jjc; xASd	1: ð2:22Þ
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The factor PcðxÞ is called the power function of cACSPDmðSd	1Þ and has the

following explicit form:

PcðxÞ ¼
XN

i¼1

XN

j¼1
gigjcðxT

i xjÞ 	 2
XN

i¼1
gicðxTxiÞ þ cð1Þ

 !1=2

;

where the coefficients fgiAR : i ¼ 1;y;Ng are chosen to satisfy

YðxÞ ¼
XN

i¼1
giYðxiÞ; for all YAHJ	1ðSd	1Þ; ð2:23Þ

where JXm is a fixed integer. The optimal power function P�
cðxÞ is determined by

minimising the quadratic expression for PcðxÞ over all coefficients fgigN
i¼1 which

satisfy (2.23) [22]. Stated in this way, it is clear that a close investigation of Pc; and

especially the choice of the gi; ought to provide an insight into the accuracy of the
ZBF interpolation method. Indeed this strategy is employed, in quite different ways,
by Jetter et al. [11] and also by von Golitschek and Light [6] to provide error bounds
of the form

jsf ðxÞ 	 f ðxÞjpBðhÞ � jjsf 	 f jjc; xASd	1; ð2:24Þ

where h is the geodesic mesh norm defined by (1.5) and BðhÞ-0 as h-0:
We remark that the error bound (2.22) may be viewed as a specific instance of the

following more general result.

Proposition 2.9. Let cACSPDmðSd	1Þ and let X ¼ fxigN
i¼1 denote a set of distinct

points on Sd	1: Consider the subspace

Zc ¼ ffAHc : f ðxiÞ ¼ 0 i ¼ 1;y;Ng;

then

jf ðxÞjpPcðxÞ � jjf jjc; for all fAZc and xASd	1: ð2:25Þ

So far in this paper we have alluded to the use of the geometric mesh-norm h (1.5) to

measure the relative density of a set of data points X ¼ fxigN
i¼1 in Sd	1:

Geometrically speaking, h represents the radius of the largest spherical cap (open

geodesic ball) which can be placed on Sd	1 without covering any xiAX: In [6], von
Golitschek and Light use the height hd of the maximal spherical cap as an alternative
mesh-norm. That is, they define hd to be the smallest number such that

inf
ZASd	1

maxfZTxi : xiAXg41	 hd ð2:26Þ

is satisfied. We shall call hd the ‘‘dot product’’ mesh norm of X: Using some

elementary trigonometry we can show that hd ¼ 2 sin2ðh=2Þ: Furthermore, if
hAð0; 2p=3Þ then we can apply the small angle result for sinðh=2Þ to give

h2

8
phdp

h2

2
ð2:27Þ
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that is, hd is equivalent to h2: The idea of using the dot product as an alternative
measure of distance will prove to be a useful one.

Definition 2.10. For every xASd	1 we define an associated a dot-product distance
function

dx : Sd	1-½	1; 1�; given by dxðZÞ ¼ xTZ:

Furthermore, we can define a dot product neighbourhood of x by

Nðx; rdÞ ¼ fZASd	1 : dxðZÞ41	 rdg; where rdAð0; 1Þ: ð2:28Þ

The following crucial result is quoted from [6].

Lemma 2.11. Let J be a fixed positive integer and let X ¼ fx1;y; xNg denote a set of

N distinct data points in Sd	1 with dot product mesh-norm hd : There is a number

h0Að0; 1Þ such that if hdoh0; and xASd	1; then there exist coefficients fgigN
i¼1

such that

1. YðxÞ ¼
PN

i¼1giYðxiÞ; for all YAHJ	1ðSd	1Þ;
2. there exists a constant K1 (independent of x and hd) such that if xieNðx;K1hdÞ; then

gi ¼ 0; and

3. there exists a constant K2 (independent of x and hd) such that
PN

i¼1jgijpK2:

With this preparation the following result can be established.

Theorem 2.12. Let cACSPDmðSd	1Þ have a-Fourier decay and let X ¼ fxigN
i¼1 denote

a set distinct points on Sd	1: Set

J ¼ max m;
Jaþ 1n

2


 �
; ð2:29Þ

where Jxn denotes the smallest integer Xx; and assume that the mesh-norm h (1.5) of

X satisfies

1

K þ 1
pho

1

K
; ð2:30Þ

where K4J is a positive integer. Let fAHc and sf denote its unique ZBF interpolant.

Then, for any xASd	1; we have

jf ðxÞ 	 sf ðxÞjpC � ha=2 � jjf 	 sf jjc; ð2:31Þ

where C is a positive constant independent of h:

Proof. For a full proof of this result see [16, Theorem 2]. For a brief sketch, we note

that choice of integer J allows us to evoke Lemma 2.11 to provide, for any xASd	1; a
neighbourhood Nðx;K1hdÞ and a set of local coefficients fgigiAIloc

; where Iloc :¼ fi :

xiAX-Nðx;K1hdÞg; which satisfy condition (2.23). Furthermore, these coefficients
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can be used to define a local power function, Pc;loc say, which by (2.22), provides the

pointwise error bound

jsf ðxÞ 	 f ðxÞjpPc;locðxÞ � jjsf 	 f jjc; xASd	1: ð2:32Þ

It then remains to show that Pc;loc can be bounded above by a constant multiplied

by ha=2: &

We close this section by providing two important properties of the ZBF
interpolant, both of which can be inferred from the theory of optimal interpolation
in a Hilbert space [7].

Lemma 2.13. Let cACSPDmðSd	1Þ: For a given fAHc let sf denote its unique

c-based ZBF interpolant, then we have

ðiÞ jjf 	 sf jj2c ¼ /f ; f 	 sf Sc; ðiiÞ jjf 	 sf jjcpjjf jjc:

3. Global error estimates

In this section we generalise techniques dating back to Duchon [4], from his study
of the accuracy of interpolation using surface splines in Euclidean space. The
requirements for a Duchon framework for the sphere are as follows:

(i) A suitable quasi-uniform mesh of data points for the sphere.
(ii) A suitable Sobolev extension operator for the sphere.
(iii) A spherical version of Duchon’s inequality.

The technical effort required to establish these items is quite considerable. In view
of this, we shall simply state the key results and refer the reader to our accompanying
paper [10] for full details.

3.1. The key results

3.1.1. A quasi-uniform mesh for the sphere

Lemma 3.1. Let dX2; be an integer and set

M ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
d 	 1

p
and dd ¼ 1

4d3=2
:

Let M1 be an arbitrary positive number, yAð0; p=3Þ and set

h0 :¼
y

M þ M1 þ dd

: ð3:1Þ

Then, for any hAð0; h0Þ; there exists a set of points ZhCSd	1 such that

Sd	1 ¼
[

zAZh

Gðz;MhÞ:
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Let FA denote the characteristic function of a set ACSd	1: There exists a positive

integer Q independent of h such thatX
zAZh

FGðz; %MhÞpQ; where %M ¼ M þ M1: ð3:2Þ

Further, the cardinality of Zh is bounded above by CQh	ðd	1Þ; where CQ is independent

of h:

Proof. Lemma 3.1 [10]. &

3.1.2. A Sobolev extension theorem for the sphere

Theorem 3.2. Let zASd	1 and X ¼ fxigN
i¼1 denote a set of distinct points on Sd	1: Let

bA½k; k þ 1�; where k4d	1
2

is a positive integer. There exists positive numbers R0 and

CA such that if we let M14maxfR0 	 2
ffiffiffiffiffiffiffiffiffiffiffi
d 	 1

p
; 0g be a fixed positive number and let

h0 ¼ CA=ð3 %MÞ where %M ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
d 	 1

p
þ M1; ð3:3Þ

then, assuming that X has mesh norm hAð0; h0Þ; there exists an extension operator

EGðz; %MhÞ : W
b
2 ðGðz; %MhÞÞ-W

b
2 ðSd	1Þ satisfying

(1) ðEGðz; %MhÞf ÞjGðz; %MhÞ ¼ f ; for all fAW
b
2 ðGðz; %MhÞÞ;

(2) there exists a positive constant K; independent of h and z such that

jjEGðz; %MhÞf jjWb
2
ðSd	1ÞpK � jjf jj

W
b
2
ðGðz; %MhÞÞ;

for all fAW
b
2 ðGðz; %MhÞÞ such that f ðxÞ ¼ 0 for xAX-Gðz; %MhÞ:

Proof. Theorem 5.19 [10]. &

3.1.3. A spherical version of Duchon’s inequality

Theorem 3.3. Let b40 and let M1 be any positive number. Set h0 to be as in (3.3), let

hAð0; h0Þ and let Zh denote the corresponding quasi-uniform mesh for Sd	1 from

Lemma 3.1. Then, for any fAW
b
2 ðSd	1Þ; we haveX

zAZh

jjf jj2
W

b
2
ðGðz; %MhÞÞpQjjf jj2

W
b
2
ðSd	1Þ; ð3:4Þ

where Q is the constant (independent of h) from Lemma 3.1.

Proof. Theorem 3.2 [10]. &
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3.2. Global error bounds

The three technical results stated in the previous subsection, i.e., the Duchon
framework for the sphere, can be viewed as the key ingredients of a recipe for providing
error bounds. In this section we demonstrate exactly how this framework can be used to
provide new Lp-error bounds for ZBF interpolation. We begin by stating our aim.

Assume that cACSPDmðSd	1Þ has a-Fourier decay. Then given any target

function fAHc and a set X ¼ fxigN
i¼1 of distinct interpolation nodes with geodesic

mesh norm h (1.5), our aim is to examine the accuracy of the c-based interpolant sf

to f over X: Specifically, we aim to establish bounds of the following form:

jjf 	 sf jjLpðSd	1ÞpChlp jjf 	 sf jjc;

where the constant C is independent of f and h; and where the number lp40 is the

called the Lp-convergence order.

Our first task is to use the covering of Sd	1 (see Lemma 3.1) to write

jjf 	 sf jjpLpðSd	1Þ ¼
Z

Sd	1
jðf 	 sf ÞðxÞjp dSðxÞ

p
X
zAZh

Z
Gðz;MhÞ

jðf 	 sf ÞðxÞjp dSðxÞ; for M ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
d 	 1

p
:

This step gives us the advantage that we can consider the error locally. In particular,

the function f 	 sf is continuous on Gðz;MhÞ and, as this is a compact subset of

Sd	1; there exists a point xzAGðz;MhÞ at which f 	 sf attains its maximum. This

observation allows us to write

jjf 	 sf jjpLpðSd	1Þp
X
zAZh

jðf 	 sf ÞðxzÞjp
Z

Gðz;MhÞ
dSðxÞ

pCdhd	1
X
zAZh

jðf 	 sf ÞðxzÞjp; ð3:5Þ

where Cd is a constant depending only on d which satisfies

AreaðGðz;MhÞÞpCdhd	1: ð3:6Þ

We know, from the variational theory, that f 	 sf AHc: Furthermore, since c has

a-Fourier decay then its native space Hc is norm equivalent to the Sobolev space

W
b
2 ðSd	1Þ; where 2b ¼ aþ d 	 1 (see Remark 2.1). Now, rather than consider

f 	 sf ; we choose instead to consider the restriction f 	 sf jGðz; %MhÞ where %M ¼
2
ffiffiffiffiffiffiffiffiffiffiffi
d 	 1

p
þ M1; for some M140 whose value, or more precisely, whose range of

values, is not yet determined.

In choosing a suitable value for M1; and hence %M; we must take into account the
following conditions:

(a) In order to employ Theorem 2.12 to provide pointwise error estimates, we require

that each Gðz; %MhÞ must contain the dot product neighbourhood Nðxz;K1hdÞ:
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(b) In order to apply the Sobolev extension operator to f 	 sf jGðz; %MhÞA

W
b
2 ðGðz; %MhÞÞ; we require that %MhAðR0h;CA=3Þ:

If we let R0 and CA denote the constants from Theorem 3.2 corresponding to

b ¼ aþd	1
2

; then the condition M14maxfR0 	 2
ffiffiffiffiffiffiffiffiffiffiffi
d 	 1

p
; 0g together with the

assumption that the geodesic mesh norm of X should satisfy

0ohoCA=ð3 %MÞ ð3:7Þ
are sufficient to guarantee that condition (b) is satisfied (see Theorem 3.2).
We now turn to condition (a). Let K1 denote the neighbourhood constant

from Theorem 2.12. For any xz; the neighbourhood Nðxz;K1hdÞ can also be viewed,
in more familiar terms, as an open geodesic ball Gðxz; yÞ; where y satisfies

sin2ðy=2Þ ¼ K1hd=2:
If we assume that the dot product mesh norm (2.26) satisfies

hdoh
ðdotÞ
0 ¼ 3=ð2K1Þ; ð3:8Þ

then we have that yAð0; 2p=3Þ; thus we can apply the small angle result for sinðy=2Þ;
followed by the mesh-norm equivalence relation (2.27) to deduce that

y

2
ffiffiffi
2

p p
ffiffiffiffiffiffiffiffiffiffi
K1hd

p
p

ffiffiffiffiffiffi
K1

p
� hffiffiffi

2
p :

In particular, if M1; is chosen according to

M14maxfR0 	 2
ffiffiffiffiffiffiffiffiffiffiffi
d 	 1

p
; 2

ffiffiffiffiffiffi
K1

p
g; ð3:9Þ

then this shows that

Nðxz;K1hdÞ ¼ Gðxz; yÞCGðxz; 2
ffiffiffiffiffiffi
K1

p
hÞ

CGðz; ðM þ 2
ffiffiffiffiffiffi
K1

p
ÞhÞ

CGðz; ðM þ M1ÞhÞ ¼ Gðz; %MhÞ

CGðz;CA=3Þ; ðsee Fig:1Þ:
And so both conditions (a) and (b) are simultaneously satisfied.
Let vz ¼ f 	 sf jGðz; %MhÞ then, using the Sobolev extension operator, we have

E1. EGðz; %MhÞvzAW
b
2 ðSd	1Þ:

E2. EGðz; %MhÞvzðxÞ ¼ 0 for all xAX-Gðz; %MhÞ:
E3. Using part 2 of Theorem 3.2, there exists a constant K; independent of h and z

such that jjEGðz; %MhÞvzjjWb
2
ðSd	1ÞpK � jjvzjjWb

2
ðGðz; %MhÞÞ:

Since condition (a) is satisfied, we have that

Xxz
¼ X-Nðxz;K1hdÞCX-Gðz; %MhÞ ¼ Xz:

Thus, the optimal power function of c; based upon Xz and evaluated at the point xz;
can be bounded above by the local power function Pc;locðxzÞ: Moreover, if we let J
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denote the integer from Theorem 2.12 and we assume that the geodesic mesh norm
of X satisfies

hAð0; h
ðgeodÞ
0 Þ where h

ðgeodÞ
0 ¼ min

CA

3 %M
;
1

K

� �
; ð3:10Þ

where K4J is a positive integer, then we can subsequently use the local error bound
(2.31) together with (2.20) and E3, respectively, to yield

jðf 	 sf ÞðxzÞj ¼ jEGðz; %MhÞvzðxzÞjpPc;locðxzÞjjEGðz; %MhÞvzjjc
pPc;locðxzÞKeqjjEGðz; %MhÞvzjjWb

2
ðSd	1Þ

pCKeq � h
a
2jjEGðz; %MhÞvzjjWb

2
ðSd	1Þ

pKCKeq � h
a
2jjvzjjWb

2
ðGðz; %MhÞÞ:

Substituting this into (3.5) gives

jjf 	 sf jjpLpðSd	1ÞpCdðKCKeqÞp � hðap
2
þd	1Þ X

zAZh

jjf 	 sf jGðz; %MhÞjj
p

W
b
2
ðGðz; %MhÞÞ

:

For pX2 we use Jensen’s inequality
PN

i¼1 a
p
i pð

PN
i¼1 a2i Þ

p=2 [1], followed by

Theorem 3.3, and (2.20) to give

jjf 	 sf jjpLpðSd	1Þ

pCdðKCKeqÞp � hðap
2
þd	1Þ �

X
zAZh

jjðf 	 sf ÞjGðz; %MhÞjj
2

W
b
2
ðGðz; %MhÞÞ

 !p=2
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pCdðKCKeq

ffiffiffiffi
Q

p
Þp � hðap

2
þd	1Þ � ðjjf 	 sf jj2Wb

2
ðSd	1ÞÞ

p=2

pCdðKCKeq

ffiffiffiffi
Q

p
k	1
eq Þ

p � hðap
2
þd	1Þ � jjf 	 sf jjpc:

Finally, taking the pth root gives

jjf 	 sf jjLpðSd	1ÞpC � h
a
2
þd	1

p jjf 	 sf jjc;

where C ¼ C
1=p
d ðKCKeq

ffiffiffiffi
Q

p
k	1
eq Þ is independent of f and h:

For pA½1; 2Þ we execute the same arguments as above, however we replace Jensen’s
inequality with

PN
i¼1 a

p
i pN1	p

2ð
PN

i¼1 a2i Þ
p=2 [1]. Further, we use the fact that the

cardinality of Zh is bounded by CQh	ðd	1Þ; see Lemma 3.1, to deduce that

jjf 	 sf jjpLpðSd	1Þ

pCdðKCKeqÞp � hðap
2
þd	1Þ �

X
zAZh

jjðf 	 sf ÞjGðz; %MhÞjj
2

W
b
2
ðGðz; %MhÞÞ

 !p=2

pCdðKCKeq

ffiffiffiffi
Q

p
Þp

CQ � hpðaþd	1
2

Þ � ðjjf 	 sf jj2Wb
2
ðSd	1ÞÞ

p=2

¼ CdðKCKeq

ffiffiffiffi
Q

p
k	1
eq Þ

p
CQ � hpðaþd	1

2
Þ � jjf 	 sf jjpc:

Finally, taking the pth root provides

jjf 	 sf jjLpðSd	1ÞpC � h
aþd	1

2 jjf 	 sf jjc;

where C ¼ ðCdCQÞ1=pðKCKeq

ffiffiffiffi
Q

p
k	1
eq Þ is independent of f and h:

In summary we have proved the following theorem.

Theorem 3.4. Assume that cACSPDmðSd	1Þ has a-Fourier decay. Let X denote a set

of distinct data points on Sd	1 with geodesic mesh-norm h (1.5). There exists a positive

number h0 such that, if hAð0; h0Þ then the c-based interpolant sf to any target function

fAHc satisfies

jjf 	 sf jjLpðSd	1ÞpC � h
a
2
þd	1

p jjf 	 sf jjc; for pA½2;NÞ ð3:11Þ

and

jjf 	 sf jjLpðSd	1ÞpC � h
a
2
þd	1

2 jjf 	 sf jjc; for pA½1; 2Þ; ð3:12Þ

where the generic constant C is independent of f and h.

Proof. Let M1 be chosen according to (3.9) and define

h0 ¼ min h
ðgeodÞ
0 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

ðdotÞ
0

q� �
;
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where h
ðgeodÞ
0 and h

ðdotÞ
0 are defined by (3.10) and (3.8), respectively. If hAð0; h0Þ; then

the two density conditions (3.10) and (3.8) are satisfied. Thus, the arguments set out
in the analysis leading up to the theorem can be employed to provide the desired
results. &

Remark 3.5. The constants appearing in the error bounds (3.11) and (3.12) depend

on the value of p: For pA½2;N� the dependence is due to the factor C
1=p
d where Cd is

given by (3.6). For pA½1; 2Þ the dependence is due to the factor ðCdCQÞ1=p where CQ

is taken from Lemma 3.1, In both cases we note that the constants do not grow
excessively large as p varies.

3.3. Improved global error bounds

At first glance it is tempting to ‘‘tidy up’’ the error results from Theorem 3.4 by
employing the optimality bound jjf 	 sf jjcpjjf jjc; from Lemma 2.13(ii). This is a

perfectly valid procedure, however we will show that an improved bound is
available, provided that f belongs to a certain subspace of Hc; which we shall denote

as Hc�c: Once this improved bound is established we will use it to improve the Lp-

convergence order in (3.11) for target functions fAHc�c:

Definition 3.6. Let cACSPDmðSd	1Þ have a-Fourier decay and let C denote its
corresponding zonal kernel. We define the convolution kernel of C by

ðC �CÞðx; ZÞ :¼
Z

Sd	1
Cðx; nÞCðn; ZÞ dod	1ðnÞ; x; ZASd	1:

It is more revealing to work in terms of Fourier expansions since we have

Cðx; ZÞ ¼
XN
k¼m

XNk;d

l¼1
ĉkYk;lðxÞYk;lðZÞ ) ðC �CÞðx; ZÞ ¼

XN
k¼m

XNk;d

l¼1
ĉ2kYk;lðxÞYk;lðZÞ:

This observation allows us to define a convolution native space by

Hc�c;m ¼ fAL2ðSd	1Þ : jf jc�c;m ¼
XN
k¼m

XNk;d

l¼1

jf̂k;l j2

ĉ2k

 !1=2

oN

8<:
9=;:

The observations made in Section 2, regarding native spaces, also apply to
convolution native spaces. In particular, we can define a normed native space
ðHc�c; jj � jjc�cÞ and conclude that

ðHc�c; jj � jjc�cÞDW
2b
2 ðSd	1ÞCW

b
2 ðSd	1ÞDðHc; jj � jjcÞ; ð3:13Þ

where b ¼ aþd	1
2

and where D denotes norm equivalence.
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Lemma 3.7. For a given fAHc�c; let sf denote its unique c-based ZBF interpolant.

Then

jjf 	 sf jj2cpjjf jjc�c � jjf 	 sf jjL2ðSd	1Þ: ð3:14Þ

Proof. Using Lemma 2.13(i), the definition of /�; �Sc and an application of the

Cauchy–Schwarz inequality respectively, gives

jjf 	 sf jj2c ¼ /f ; f 	 sf Sc ¼
XN
k¼m

XNk;d

l¼1

f̂k;l � ðf̂k;l 	 #ðsf Þk;lÞ
ĉk

p
XN
k¼m

XNk;d

l¼1

jf̂k;l j2

ĉ2k

 !1=2 XN
k¼m

XNk;d

l¼1
ðf̂k;l 	 #ðsf Þk;lÞ2

 !1=2

p jjf jjc�c � jjf 	 sf jjL2ðSd	1Þ: &

With this in place we can provide the following improved error bound.

Theorem 3.8. Assume the same set up as in Theorem 3.4 and assume further that the

target function f belongs to Hc�c: Then we have

jjf 	 sf jjLpðSd	1ÞpC2 � h
aþd	1

2
þd	1

p jjf jjc�c; for pA½2;NÞ ð3:15Þ

and

jjf 	 sf jjLpðSd	1ÞpC2 � haþd	1jjf jjc�c; for pA½1; 2�; ð3:16Þ

where C is the constant, independent of h, from Theorem 3.4.

Proof. Since fAHc�cCHc we have, from Theorem 3.4 with p ¼ 2; that

jjf 	 sf jjL2ðSd	1ÞpC � h
a
2
þd	1

2 jjf 	 sf jjc;

substituting this into (3.14) gives

jjf 	 sf jj2cpCh
a
2
þd	1

2 jjf jjc�cjjf 	 sf jjc;

cancelling the factor jjf 	 sf jjc gives

jjf 	 sf jjcpC � h
a
2
þd	1

2 jjf jjc�c: ð3:17Þ

Substituting this inequality into the results of Theorem 3.4, namely (3.11) and (3.12),
proves the theorem. &

Note. Due to the norm equivalence of native spaces and Sobolev spaces, we can
recast the error bound (3.17) as

jjf 	 sf jjWb
2
ðSd	1Þp eCC � hbjjf jj

W
2b
2
ðSd	1Þ;

ARTICLE IN PRESS
S. Hubbert, T.M. Morton / Journal of Approximation Theory 129 (2004) 58–77 75



where 2b ¼ aþ d 	 1 and where the constant eCC is independent of h: Thus, as
a by-product, our analysis provides a useful convergence result for the case where the
interpolation error is measured in an appropriate Sobolev space norm.

Corollary 3.9. Assuming the same set up as in Theorem 3.8, we have

jjf 	 sf jjLNðSd	1ÞpC � haþd	1
2 jjf jjc�c; ð3:18Þ

where C is a positive constant independent of h.

Proof. Since fAHc�cCHc; we can appeal to Theorem 2.12 to deduce that there

exists a constant C independent of h such that

jjf 	 sf jjLNðSd	1ÞpC � ha=2 � jjf 	 sf jjc:

The proof is completed by substituting (3.17) into the above. &

4. Conclusions

In [9], a numerical investigation into the performance of the ZBF method is
presented. In particular, the numerical evidence strongly suggests that if

cACSPDmðSd	1Þ has a-Fourier decay and fAHc�c; then the optimal Lp-error

bound has the form

jjf 	 sf jjLpðSd	1ÞpC � haþd	1jjf jjc�c; pA½1;N�; ð4:1Þ

for some constant C independent of h: Comparing this result with our theoretical
error bounds, (3.15) and (3.16), we find that we have complete agreement in the case
of pA½1; 2�: However, for p42; there is gap between the theoretical bound and the
numerically observed bound. Indeed, the authors believe that the task of bridging

this gap that is, replacing the factor d	1
p
in (3.15) with d	1

2
; is a challenging puzzle and

one which deserves further investigation.

Remark. Subsequent to the completion of this work we have received the
preprint [12] in which an analysis for RBF interpolation is presented. The analysis
applies to domains which satisfy certain technical conditions. Examples of such

domains include the usual open bounded subsets of Rd with the cone condition
(see [4]) and also the unit sphere. The resulting error estimates for the unit sphere
are comparable to those derived in this paper, however our techniques are
different.
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Vol. 132, Birkhäuser, Basel, 1999, pp. 117–143.

[13] W.A. Light, H. Wayne, Power functions and error estimates for radial basis function interpolation,

J. Approx. Theory 92 (1992) 245–267.

[14] V.A. Menegatto, Strictly positive definite kernels on the circle, Rocky Mountain J. Math. 25 (1995)

1149–1163.

[15] T.M. Morton, Improved error bounds for solving pseudodifferential equations on spheres by

collocation with zonal kernels, in: K. Kopotun, T. Lyche, M. Neamtu (Eds.), Trends in

Approximation Theory, Vanderbilt University Press, Nashville, 2001, pp. 1–10.

[16] C. Müller, in: Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17, Springer, Berlin, 1966.

[17] A. Ron, X. Sun, Strictly positive definite functions on spheres in Euclidean spaces, Math. Comput. 65

(1996) 1513–1530.

[18] M. Schreiner, On a new condition for strictly positive definite functions on spheres, Proc. Amer.

Math. Soc. 125 (1997) 531–539.

[19] I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96–108.

[20] H. Wendland, Sobolev-type error estimates for interpolation by radial basis functions, in: A. Le
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