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Abstract

In this paper we review the variational approach to radial basis function interpolation on
the sphere and establish new L,-error bounds, for pe[l, co]. These bounds are given in terms
of a measure of the density of the interpolation points, the dimension of the sphere and the
smoothness of the underlying basis function.
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1. Introduction

Many applications lead to problems of interpolating values f; of an unknown
function f at scattered locations x;eR? where i=1,...,N. One of the most
promising ways of solving this problem is to employ radial basis functions. The most
general radial basis function (RBF) interpolant takes the form

N
s(x) =Y 4(d(x,x) + p(x), (1.1)
=1
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where d(x,y) = ||x —y|| is usually the Euclidean metric, p is a d-dimensional
polynomial of suitable degree and ¢ : [0, o0)— R is the RBF. The real coefficients
{%:j=1,...,N} and the polynomial p (if required) are chosen so that s(x;) = f;
(1<i<N).

Since the early 1990s progress in the interpolation theory of RBFs has been
phenomenal. Encouraging theoretical findings regarding uniqueness, accuracy and
stability have been discovered alongside ingenious numerical algorithms for practical
implementation. For an excellent account of this material we recommend the
textbook [2].

In this paper we are interested in examining how the RBF method can be used to
solve the following spherical interpolation problem.

Problem. Let E = {51‘},1'11 denote a set of distinct points located on the unit sphere
ST =R and let f (&) denote the corresponding values of an unknown target function
f: S 'SR. Find a continuous function Sr S?=1 5 R which satisfies the following
interpolation conditions:

(&) =f(&), i=1,..,N. (1.2)

One way to attack this problem is to apply the RBF method directly. This is a
perfectly valid approach, however it does not take into account the fact that the data
points lie on a (d — 1)-dimensional surface embedded in RY. A more illuminating
approach is to specialise the method to the sphere. Specifically, we exchange the
Euclidean metric for the geodesic metric defined by

g(&n) =cos™' (&™), for & nest!. (1.3)

In addition we replace the RBF ¢ : [0, 00)—> R with a zonal basis function (ZBF)
¥ :[0,7] >R, and, as a first step, we seek a basic interpolant of the form
N

s(&) = (g8, &), ces (14)

Jj=1

In Section 2 of this paper we address the solvability of the spherical interpolation
problem using ZBFs. Specifically, we briefly review the necessary functional analysis
for the sphere and then, we introduce the class of strictly positive definite functions
for the sphere. This class serves as a useful source of applicable basis functions for
which a unique ZBF interpolant is guaranteed. Taking the RBF analogy one step
further we dispense with the notion of polynomial reproduction and replace it with
spherical harmonic polynomial reproduction, whereby we augment the basic ZBF
interpolant by adding a spherical harmonic of a suitable degree. This leads us to
introduce classes of conditionally strictly positive definite functions for the sphere,
which again provide unique ZBF interpolants. To close Section 2 we demonstrate
how each of the ZBF interpolants may also be viewed as the unique solution to a
certain variational or minimal norm interpolation problem. We highlight the
usefulness of this variational view by mentioning a pointwise error estimate which is
a minor modification of the result found in [6].
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Section 3 of the paper is devoted to convergence theory. If & = {éi}fi | denotes a
set of scattered points on S?~! then we measure the distribution of the Z by using the
geodesic mesh norm

h= sup min g(¢,&). (1.5)

Eesd-1 ek
In general, we aim to provide bounds of the form
sy =S, 50y <BMIFI, - pell, «o],

where f is measured in a suitable Sobolev-type norm and where %(h) is a function
converging to zero as h—0, that is as the set Z becomes denser in S?'. Our
approach is to revisit an old strategy originally used by Duchon [4] in his
investigation of the accuracy of surface splines interpolants. In [14], Light and
Wayne demonstrate how the Duchon strategy can be modified to provide error
estimates for the more general case of RBF interpolation; see also [21]. In our
companion paper [10] we have modified the Duchon strategy further so that it can
work on the sphere. We rely on this framework together with the variational view of
ZBF interpolation to provide new interpolation error estimates for sufficiently
smooth target functions.

2. The zonal basis function method
2.1. Background

We begin by introducing spherical harmonics, which are the spherical analogue of
classical polynomials. A good reference for this material is [17]. A spherical
harmonic of order k on S?! is the restriction to S?°! of a d-dimensional
homogeneous harmonic polynomial of degree k. We let %Z(Sd‘]) denote the space
of spherical harmonics of order k on S9°!. This space has a useful intrinsic
characterisation. If we let A;_; denote the Laplace—Beltrami operator on S?~! then
the eigenvalues for the eigenvalue problem

(Ag1+Au=0 (2.1)
are Ay =k(k+d—2) k=0, and #;(S") is precisely the eigenspace of A,

corresponding to /. The dimension Ny 4 of #7(S?7") is given by the multiplicity of
Jx in (2.1), specifically

—2/k+d-3
Noqg =1, and de:2k+kd2<k+l ), k>=1.

Given an orthonormal basis {#y;: [ =1, ..., Ny4} for #7(S9") the collection

{U:?/_/'J 2l = 1, "'7Ni~,d IjZO,l, ,k}
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is an orthonormal basis for the space of spherical harmonics of order at most k,
which we denote by #;(S?"!). Furthermore, the collection

{@j,l =1, ...,N}_d :j>0}
forms an orthonormal basis for L;(S9~!). According to the celebrated Addition

Theorem

Nia
o _
Pra(¢™y) L E Y1), &EnesSt, (2.2)

where Py 4 is the d-dimensional Legendre polynomial of degree k, and where wy_
denotes the surface area of S9!,

Spherical harmonics can be used to give a “Fourier analysis” for the sphere. In
particular, every function f'e L,(S?"!) has an associated Fourier series

/= zw: Zf;c,lq’/k#l- (2.3)

The Fourier coefficients are obtained by

fer= | f(OWr(€)dS (&), (2.4)

Sd-1

where dS represents a surface element of S9!, The square of the L,(S?"!')-norm of f
is given by

Vi = [, V@Pas@ =3 S it 25)

where the second equality is Parseval’s identity.
For a real number >0 the Sobolev space Wzﬂ(Sd’l) of order f is defined as

o Nka
{feLAS‘“)stlliV;(Sl“ DD (4 |fk,,|2<oo}. (2.6)

k=0 [=1

The Sobolev embedding theorem holds true on the sphere. The theorem asserts that
whenever f>451 then W/ (S?!) is continuously embedded in C(S¢™).

The numbers Ay = k(k +d —2) are the eigenvalues of the Laplace—Beltrami
operator, which behave like k2 for large k.

Remark 2.1. Let {¢é},, denote a sequence of positive real numbers for which there
exists positive constants ¢ and C such that

_C cae ©
(L+&) T (k)

//\

k=0, >0.
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Then the space

o Nea (f 12
{feLz(S””) =Yy <oo}
I=1

=0 Ck

is norm equivalent to the Sobolev space (2.6).

2.2. Interpolating with basis functions

In order to solve the spherical interpolation problem we propose the use of
zonal basis functions and so we seek a basic interpolant with the form (1.4).
Applying the interpolation conditions (1.2) we can deduce that the real coefficients
{o;:i=1,...,N} can be uniquely determined if and only if the interpolation
matrix

Ay =¥(9(&,&)), 1<ij<N (2.7)

is non-singular,

Definition 2.2. A continuous function ¥ : [0, 7] >R is said to be strictly positive
definite on S9! (Y e SPD(S 1)) if, for any set Z = {}Y, of distinct points on
S9-1 the quadratic form

N N
o Ax =" o (9(&, &) (2.8)
= k=

is positive on RM\{0}.

If we choose Yy e SPD(S~!), then the resulting interpolant (1.4) is unique since the
corresponding interpolation matrix is, by definition, positive definite and hence non-
singular.

Frequently one requires that an interpolant should reproduce the low order
spherical harmonics. The ZBF interpolant s, given by (1.4), does not have this
property and so it is often convenient to add to s a spherical harmonic of order k,
which gives the form

N

M
S(E) =" a(g(&, ) + > BH(&), Ees, (2.9)
j=1

J=1

where M = dim #;(S9"), and {#1, ..., %} is a basis for #;(S9).

The interpolation conditions (1.2) now provide N linear equations in N + M
unknowns. In such cases it is usual to assume that N > M and to impose M moment
conditions on the {o;:i=1,...,N} to take up the extra degrees of freedom.
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Specifically, we use the equations

N

ZW( (&, &) +Zﬁ, =f(&), 1<i<N,

N

Z Yi(&) =0, 1<i<M. (2.10)

Definition 2.3. For any set = = {¢;}Y, of distinct data points on 9~ we consider
the following subspace:

N
Wi = {oce RY 0> " a#(&) = 0 for all @e%ml(sdl)}. (2.11)

i=1

A continuous function  : [0, 7] >R is said to be conditionally strictly positive
definite of order meN on §?°!, (y e CSPD,,(§%"")) if the quadratic form (2.8) is
positive on W,,_1\{0}.

Any function y € CSPD,,(S"') can be used to provide an augmented ZBF
interpolant of the form (2.9) with k = m — 1. However, in order to guarantee the
uniqueness of such a solution we require that the interpolation points satisfy the
following geometric condition.

Spherical harmonic unisolvency. Let meN and set M = dim #,,_1(S97"). A set of
distinct points E = {é,}gl is said to be A ,,_1(S?"")-unisolvent if the only element of
%n7,1(Sd’1) to vanish at each &; is the zero spherical harmonic.

If YeCSPD,, (S ') and the interpolation points == {&}Y, contain an
H -1 (S )-unisolvent subset, then the interpolant of the form (2.9) is unique [13].

Using the work of Schoenberg [20], and extensions thereof [5], we can formulate
the following theorem.

Theorem 2.4. If ye CSPD,,(S97"), then it has the following form:

[o0)

Y(0) = >  akPra(cos0), (2.12)
k=0

where
o0
ar =0 for k=m and Zak< 00, (2.13)
k=0
where { Py 4} denote the d-dimensional Legendre polynomials.

Remark 2.5. (i) In view of Theorem 2.4 we choose to consider each ZBF as a
function of the inner product, ¢y, since cos(g(¢,n)) = &7y.
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(ii) Throughout this paper we shall take yy € CSPDy(S?"") to mean ye SPD(S9~1).
Further, if e CSPD,,(S?"") with m>0, then we shall assume without loss that
a, =0 for 0<k<m— 1.

The complete characterisation of the class of functions of the form (2.12)
satisfying (2.13) that are CSPD,,(S~!) has been investigated by several researchers
see [15,18,19]. The most recent result is due to Chen et al. [3] who show that, for
d >3, a necessary and sufficient condition is that the set {keNy\{0,1,...,m —1}:
ar >0} must contain infinitely many odd and infinitely many even integers. The case
of d =2 remains an open problem and so we will only consider basis functions
e CSPD,,(S"") for which a; >0 for k>m.

2.3. A variational theory

For every e CSPD,,(S%"") we can associate a zonal kernel ¥(&,1) = y(&7n).
This, in turn, has a unique spherical Fourier expansion, given by

Nia

n) = i > @i E)Yra(n), (2.14)

k=m I=1

where the ¢ denote the spherical Fourier coefficients of ¥. These are related, via the
addition theorem, to the Legendre coefficients of ¥ by ¢ = axws—1/Nia.
Furthermore, each sequence {¢x},-,, possesses a certain decay rate as k— co. In
particular, we say that y has a-Fourier decay if there exists positive constants A, A,
such that

A1+ k)Mo <A (1 + k)79 0>0, k=>m. (2.15)

Definition 2.6. Let e CSPD,,(S?") and let {¢},,, denote the spherical Fourier
coefficients of its associated zonal kernel (2.14). We define the native space of s to be

o Nia
Hyp = {feLz<sd-‘> =) > T V’”' } (2.16)

k=m I=1

where | - |, ,, is a (semi-)norm induced via the (semi-)inner product

7.9),, Z kalgkl (2.17)

k=m I=1

If m = 0O then | - |, , is a norm which we rewrite as || - [|,. Indeed, if  has a-Fourier
decay, then Remark 2.1 allows us to deduce that Hy o is norm equivalent to the
Sobolev space W2 (S%!) where f = 412,

If m>0, then |-|,,, is a semi-norm and has #, 1(S*"') as its null space.
However, if we assume that {&}, ..., &)/} is a #,,_1(S?~!)-unisolvent set, then we can
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consider a new bilinear form

M
<f,g>1// = Zf(él)g(él) + (f’ g)l//,nﬂ f7g6H‘ e (218)
i=1

With this in place we notice that 0 = (f,f), if and only if f€#,_;(S?"") and
Zglf(éi)z = 0, that is, if and only if / = 0. Thus, {-,-}, is a genuine inner product
for Hy ,,. Furthermore, the space Hy ,, is complete with respect to the norm induced
by <-,->, [13]. This allows us to consider the following new definition.

Definition 2.7. Let m>0 and let e CSPD,,(S?"!). We define the normed native
Hilbert space of {y by

Hy = {feLy (S ") : [[f]l, <}, (2.19)

where || - ||, is the norm induced by the inner product (2.18).

Before we discuss the importance of the native space we provide the following
observation which will prove useful in Section 3, where we analyse the accuracy of
the ZBF interpolants.

Observation 2.8. If the basis function \ has a-Fourier decay then we can use Remark
2.1, and the fact that all norms are equivalent on finite dimensional spaces, to deduce
that Hy is norm equivalent to Wzﬂ(Sd’l), where B =9=*2 That is, there exists
constants 0 <keq <Keq, such that

Keall - pgsey < - ly <Keall - s (2.20)

In particular, we can use the Sobolev embedding theorem to conclude that Hy is a
Hilbert space of continuous functions.

The importance of the native space of a basis function y € SCPD,,(S97") is well
illustrated by Levesley et al. [13], where it is shown that, given any feHy, the
solution to the following variational problem:

minimise {||s]|, : se Hy and s(¢;) =1(&;) 1<i<N}, (2.21)

is precisely the unique -based ZBF interpolant. This variational problem is
precisely the same as finding the optimal interpolant in a Hilbert space, such
problems are well understood and were studied in the late 1950s by Golomb and
Weinberger [7]. The real power of the variational approach lies in the fact that the
original Hilbert space techniques from [7] can be applied to provide useful pointwise
error bounds. Specifically, for a given feHy,, the error of its y-based ZBF
interpolant sy can be bounded by an estimate of the form

57 (&) = F(OI<Py (&) - llsy —f1ly, EeST". (2.22)
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The factor Py (&) is called the power function of ye CSPD,,(S9~!) and has the
following explicit form:

N N N 1/2
Py(¢) = (Z (el e -2y mb(f%)W(l)) :
i=1 j=1 i=1

where the coefficients {y,eR:i=1,..., N} are chosen to satisfy
N
Y(E)=> (&), forall e, (s*7), (2.23)
i=1

where J>m is a fixed integer. The optimal power function P*w(.f) is determined by
minimising the quadratic expression for Py (&) over all coefficients {7}Y, which
satisfy (2.23) [22]. Stated in this way, it is clear that a close investigation of Py, and
especially the choice of the y;, ought to provide an insight into the accuracy of the
ZBF interpolation method. Indeed this strategy is employed, in quite different ways,
by Jetter et al. [11] and also by von Golitschek and Light [6] to provide error bounds
of the form

57 (&) = f(OI< B -[Isr =1l EesT, (2.24)

where 7 is the geodesic mesh norm defined by (1.5) and #(h)—0 as 1—0.
We remark that the error bound (2.22) may be viewed as a specific instance of the
following more general result.

Proposition 2.9. Let e CSPD,,(S"") and let = = {£;}Y, denote a set of distinct
points on S?~1. Consider the subspace

Zl//:{fEHlﬂf(él):() i:17"'7N}a
then
f(OI<Py(E) - Iflly, for all feZ, and EesSi (2.25)

So far in this paper we have alluded to the use of the geometric mesh-norm 4 (1.5) to
measure the relative density of a set of data points E = {éi}fil in S9°1.
Geometrically speaking, & represents the radius of the largest spherical cap (open
geodesic ball) which can be placed on §?~! without covering any & e€Z. In [6], von
Golitschek and Light use the height /1, of the maximal spherical cap as an alternative
mesh-norm. That is, they define 4, to be the smallest number such that
inf max{n’¢ :&eEY>1—hy (2.26)

nesi-1
is satisfied. We shall call /4; the “dot product” mesh norm of Z. Using some
elementary trigonometry we can show that /, = 2sin’(h/2). Furthermore, if
he(0,2n/3) then we can apply the small angle result for sin(/2) to give

" "

<h, < .
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that is, sy is equivalent to A2. The idea of using the dot product as an alternative
measure of distance will prove to be a useful one.

Definition 2.10. For every ¢eS? ! we define an associated a dot-product distance
function

d:: 871 5 [—1,1], given by d:(n) = &n.
Furthermore, we can define a dot product neighbourhood of ¢ by
N(&rq) = {neS™" . d:(n)>1—r4}, where rse(0,1). (2.28)

The following crucial result is quoted from [6].

Lemma 2.11. Let J be a fixed positive integer and let & = {&,, ..., &y} denote a set of
N distinct data points in S~ with dot product mesh-norm hy. There is a number
hoe(0,1) such that if hy<hy, and E€S9"", then there exist coefficients {y;}N,
such that

Lo #(&) =X 0, (&), for all W e A y_y(S4),

2. there exists a constant Ky (independent of & and hy) such that if &;¢ N(&, Kihy), then
y; =0, and

3. there exists a constant K, (independent of & and hy) such that Zfil |7;| < K.

With this preparation the following result can be established.

Theorem 2.12. Let € CSPD,,(S4"") have a-Fourier decay and let £ = {&;}Y | denote
a set distinct points on S, Set

J = max{m,w}, (2.29)

where | x'| denotes the smallest integer > x, and assume that the mesh-norm h (1.5) of
Z satisfies
SISV (2.30)
K+1 K
where K >J is a positive integer. Let f € Hy and sy denote its unique ZBF interpolant.
Then, for any €S, we have

(&) = sp(OI<E - H2-If = syl (2.31)

where € is a positive constant independent of h.

Proof. For a full proof of this result see [16, Theorem 2]. For a brief sketch, we note
that choice of integer J allows us to evoke Lemma 2.11 to provide, for any é€ S7° !, a
neighbourhood N (&, Kihy) and a set of local coefficients {y;},.; , where fioc = {i :
¢&ieEnN(E Kihy)}, which satisfy condition (2.23). Furthermore, these coefficients
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can be used to define a local power function, Py jo. say, which by (2.22), provides the
pointwise error bound

I57(8) = f ()< Pytoe() - lsy —fl,  EeS. (2.32)

It then remains to show that Py j,c can be bounded above by a constant multiplied
by n*/2. O

We close this section by providing two important properties of the ZBF
interpolant, both of which can be inferred from the theory of optimal interpolation
in a Hilbert space [7].

Lemma 2.13. Let e CSPD,,(S%"). For a given feHy let sy denote its unique
Y-based ZBF interpolant, then we have

@) W =slly = <o =5 Q)= sylly <1y

3. Global error estimates

In this section we generalise techniques dating back to Duchon [4], from his study
of the accuracy of interpolation using surface splines in Euclidean space. The
requirements for a Duchon framework for the sphere are as follows:

(i) A suitable quasi-uniform mesh of data points for the sphere.
(i1) A suitable Sobolev extension operator for the sphere.
(iii) A spherical version of Duchon’s inequality.

The technical effort required to establish these items is quite considerable. In view
of this, we shall simply state the key results and refer the reader to our accompanying
paper [10] for full details.

3.1. The key results
3.1.1. A quasi-uniform mesh for the sphere

Lemma 3.1. Let d>2, be an integer and set

M=2vd—-1 and 6,= !

4d3/%
Let M, be an arbitrary positive number, 0€(0,7/3) and set
0
hy = ————. 3.1
T M M+ 0, (3.1)

Then, for any he (0,hy), there exists a set of points Z, =S~ such that

st =] G(z, Mh).
ZEZ/,
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Let F, denote the characteristic function of a set A< S\, There exists a positive
integer Q independent of h such that

Z FG(:,Mh) < Qa where M = M + M. (32)

ZEZ/,

Further, the cardinality of Z), is bounded above by CQh’(d’l), where Co is independent
of h.

Proof. Lemma 3.1 [10]. O
3.1.2. A Sobolev extension theorem for the sphere

Theorem 3.2. Let ze S and Z = {£;}Y., denote a set of distinct points on S~". Let
pelk,k + 1], where k>% is a positive integer. There exists positive numbers Ry and
C.y such that if we let M} >max{%#y — 2V d — 1,0} be a fixed positive number and let

hy=Cy/(3M) where M =2vVd — 1+ M, (3.3)

then, assuming that E has mesh norm he(0,hy), there exists an extension operator
EG(- i) : Wf(G(z, Mh))— Wzﬁ(Sd_') satisfying

D (Eg. i)\ gesm =1 for all f € WE(G(z, Mh)),
(2) there exists a positive constant K", independent of h and z such that

HEG(Z,MhV[HWz/j(Sd4) <A - |V.||W2/§(G(Z,Mh))’
for all f e W (G(z, Mh)) such that f (&) = 0 for E€EG(z, Mh).

Proof. Theorem 5.19 [10]. O

3.1.3. A spherical version of Duchon’s inequality

Theorem 3.3. Let >0 and let M, be any positive number. Set hy to be as in (3.3), let
he(0,hy) and let Z), denote the corresponding quasi-uniform mesh for S~ from

Lemma 3.1. Then, for any f e WE(S?1), we have

Z Hf”in/f((;(Z,Mh)) < Q| lf”?/[/zﬁ(sd—l)a (34)

zeZy
where Q is the constant (independent of h) from Lemma 3.1.

Proof. Theorem 3.2 [10]. O
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3.2. Global error bounds

The three technical results stated in the previous subsection, i.e., the Duchon
framework for the sphere, can be viewed as the key ingredients of a recipe for providing
error bounds. In this section we demonstrate exactly how this framework can be used to
provide new L,-error bounds for ZBF interpolation. We begin by stating our aim.

Assume that y e CSPD,,(S") has a-Fourier decay. Then given any target

function f'e Hy and a set & = {&;}" | of distinct interpolation nodes with geodesic
mesh norm / (1.5), our aim is to examine the accuracy of the y-based interpolant sy
to f over E. Specifically, we aim to establish bounds of the following form:

1 = 57l sy SER7 N = syl

where the constant % is independent of f and /4, and where the number 4, >0 is the
called the L,-convergence order.
Our first task is to use the covering of S?~! (see Lemma 3.1) to write

I =3l = [ 1 =50)(OF ds(&)
<2 /c@,M;,) I(f = s7)(E)) dS(&), for M =2Vd —1.

zeZy
This step gives us the advantage that we can consider the error locally. In particular,
the function f — sy is continuous on G(z, Mh) and, as this is a compact subset of
S9-1 there exists a point fzem at which f — s, attains its maximum. This
observation allows us to write

If =516, 50y < 2 0 = )(&IF / oy 850
< CH Y = s, (35)
zeZy

where C; is a constant depending only on d which satisfies

Area(G(z, Mh)) < Cyh?=". (3.6)
We know, from the variational theory, that f — s,€ H,. Furthermore, since i has
o-Fourier decay then its native space Hy is norm equivalent to the Sobolev space
Wzﬂ(Sd’l), where 2f =a+d — 1 (see Remark 2.1). Now, rather than consider
/=7, we choose instead to consider the restriction f — 7| ;) where M=

2vV/d — 1+ M, for some M| >0 whose value, or more precisely, whose range of
values, is not yet determined.

In choosing a suitable value for M7, and hence M, we must take into account the
following conditions:

(a) In order to employ Theorem 2.12 to provide pointwise error estimates, we require
that each G(z, Mh) must contain the dot product neighbourhood N(¢., K hy).
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(b) In order to apply the Sobolev extension operator to f *Sf|G(z,M/1)E
W!(G(z, Mh)), we require that Mhe (Roh, C.y/3).

If we let £y and C., denote the constants from Theorem 3.2 corresponding to
p=24=1" then the condition M;>max{Z%y—2vd— 1,0} together with the
assumption that the geodesic mesh norm of = should satisfy

0<h<Cy/(3M) (3.7)

are sufficient to guarantee that condition (b) is satisfied (see Theorem 3.2).

We now turn to condition (a). Let K; denote the neighbourhood constant
from Theorem 2.12. For any ¢., the neighbourhood N(¢., K h,) can also be viewed,
in more familiar terms, as an open geodesic ball G(¢.,6), where 0 satisfies

sin?(0/2) = Ky hg/2.
If we assume that the dot product mesh norm (2.26) satisfies

ha<h*Y =3/(2K)), (3.8)

then we have that 6 (0,2n/3), thus we can apply the small angle result for sin(0/2),
followed by the mesh-norm equivalence relation (2.27) to deduce that

3§< VEKihi< /K - jz
In particular, if M, is chosen according to
M >max{Z, — 2Vd — 1,2\/K;}, (3.9)
then this shows that
N(&:, Kiha) = G(&:,0) ,2V/Kih)
(M +2v/K))h)
(M + M\)h) = G(z, Mh)
z,Cy/3), (see Fig.l).

And so both conditions (a) and (b) are simultancously satisfied.
Let v- = /" — /(G- sz then, using the Sobolev extension operator, we have

G(&:
Gz,
G(z,
G(z,

El. Eg.imyv-€ wh(si).
E2. Eg. yyv=(&) = 0 for all Ee 2N G(z, Mh).
E3. Using part 2 of Theorem 3.2, there exists a constant %", independent of / and z

such that ||EG z,Mh) Uz ||Wﬁ §d— 1)<<%/ ||U’||Wﬁ (z,Mh))"

Since condition (a) is satisfied, we have that
Ef; = EmN(E:? thd) cEN G(Z7 Mh) = Ez~

Thus, the optimal power function of , based upon Z. and evaluated at the point ¢_,
can be bounded above by the local power function Py joc(&.). Moreover, if we let J
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denote the integer from Theorem 2.12 and we assume that the geodesic mesh norm
of & satisfies

Cy 1
he (0,hEY)  where AE*Y = min (=2 3.10
€(0,hy ) where = min K (3.10)

where K > J is a positive integer, then we can subsequently use the local error bound
(2.31) together with (2.20) and E3, respectively, to yield

| = 59) (Il = [EG(z,simy = (E2) [ S Py joe (&)

< Pl//.loc(é—)KeqHEG =, Mh) U:” Wf(sdfl)

lly

S CKeq - h2||EG 2 Nh) U—||Wﬂ 41

< f(gKeq 'h5||vz|\W2/;(G<ZﬁMh)).

Substituting this into (3.5) gives

g CAvE g p
Hf - ‘Sf‘”ip(sdfl) < Cd(%(gKeq)p : h( 2 " 1) Z Hf - Sf|G(z’Mh)|‘IW;(G(LM/'I)).
ZGZ/, '

For p>2 we use Jensen's inequality S, &/ < (32N, a%)"/2 [1], followed by
Theorem 3.3, and (2.20) to give

V= Sf||ip(S¢l—l)

p/2
w4
<Cy(HCKeg) - HTHD <Z 10 = 50 g(e.ian s 6 Mh)))

ZGZ/,

Gz, /3)

Fig. 1. Illustration of the nesting of the key neighbourhoods.
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. WP
<cd<wz<eq\/@>" R ([P
< CUHCRegn/ O - KT || — |1

Finally, taking the pth root gives

X gd=1
V= spll ey <SC-h2 v |l = sy,

where C = C:/p (A €Keqr/ Ok, ) is independent of f and h.
For pe[l,2) we execute the same arguments as above, however we replace Jensen’s
?
inequality with YN, & <N'""2(32N, a2)"/* [1]. Further, we use the fact that the
cardinality of Z, is bounded by Coh~“~1, see Lemma 3.1, to deduce that

If = Sf”ip(sd—l)

»/2
S Cy(HCKeq) - AT <Z||(f—5f )6 Mh||Wﬁ =, Mh) )

4 EZ/,
1+d 1

< Cy(H CKegr/ QY Co - I’ V(I - sf||2W2,;(S(,,I))p/z

1
P = sl

+
= Co(H CKeq/ Ok ) Co - I
Finally, taking the pth root provides
I's

where C = (C;Cp) Ve %Keq\/Oky,') is independent of f and /.
In summary we have proved the following theorem.

_Sf”x//a

Theorem 3.4. Assume that e CSPD,,(S"") has a-Fourier decay. Let E denote a set
of distinct data points on S*~" with geodesic mesh-norm h (1.5). There exists a positive
number hy such that, if he (0, hy) then the -based interpolant sy to any target function
feHy satisfies

o, d=1
I = syl sy <C -5 P |If = sl for pel2, o) (3.11)
and
o, d-1
If = 7l 50y <SC - B2 2 |If —s7lly,  for pell,2), (3.12)

where the generic constant C is independent of f and h.

Proof. Let M; be chosen according to (3.9) and define

hy = min (hgg“’d), 2hg"°‘>),
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where A2 and 4" are defined by (3.10) and (3.8), respectively. If he (0, /), then
the two density conditions (3.10) and (3.8) are satisfied. Thus, the arguments set out
in the analysis leading up to the theorem can be employed to provide the desired
results. [

Remark 3.5. The constants appearing in the error bounds (3.11) and (3.12) depend
on the value of p. For pe[2, oo] the dependence is due to the factor C}/ ? where Cy is
given by (3.6). For pe|l,2) the dependence is due to the factor (CdCQ)l/” where Co

is taken from Lemma 3.1, In both cases we note that the constants do not grow
excessively large as p varies.

3.3. Improved global error bounds

At first glance it is tempting to “‘tidy up” the error results from Theorem 3.4 by
employing the optimality bound ||f — s¢|[, <[|f]l,, from Lemma 2.13(ii). This is a

perfectly valid procedure, however we will show that an improved bound is
available, provided that f belongs to a certain subspace of Hy,, which we shall denote
as Hy.,;. Once this improved bound is established we will use it to improve the L,-
convergence order in (3.11) for target functions f € Hy..

Definition 3.6. Let e CSPD,,(S?"') have a-Fourier decay and let ¥ denote its
corresponding zonal kernel. We define the convolution kernel of ¥ by

(P P)(&n) = /S{F1 P(EVP (v, ) dog_1(v), &EneSt

It is more revealing to work in terms of Fourier expansions since we have

0 Nia o Nia
(<) Z Z W) Wra(n) = (P P)(Em) = Z P Y1 (OY ()
k= k=m =1

This observation allows us to define a convolution native space by

o Nkd
Hl//*l//,m = fELz(Sdﬁl) : V|lﬂ*l//,m — (Z Z lfkll ) <o

k=m =1

The observations made in Section 2, regarding native spaces, also apply to
convolution native spaces. In particular, we can define a normed native space
(Hysps || - |1yy) and conclude that

(Hyps || o) = W5 (SN e WH (841 = (Hy, 1] - 11,) (3.13)

where f§ = ““21 I and where >~ denotes norm equivalence.
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Lemma 3.7. For a given f € Hy.y, let sy denote its unique -based ZBF interpolant.
Then

1 = 115 <11 - IIF = 57l y(0-1)- (3.14)

Proof. Using Lemma 2.13(i), the definition of ¢-,-), and an application of the
Cauchy—Schwarz inequality respectively, gives

o Nia B
If = sl = <fof = s>y = szkl (sz (s7)k2)

w0 Nia o Nia X 1/2
(Z > al ) <Z > ot~ (sf>k,1>2>
k=m I=1

k=m I=
\W|‘l/,*l/,'|lf_sf||Lz(sdf')- O

With this in place we can provide the following improved error bound.

Theorem 3.8. Assume the same set up as in Theorem 3.4 and assume further that the
target function f belongs to Hy.,. Then we have

oc+ +

1 = syll 5oy <€ BTl for pel2, o) (3.15)
and

1 = s7llp, 5oy SC* - B | s for pefl, 2], (3.16)

where C is the constant, independent of h, from Theorem 3.4.

Proof. Since f'e Hy., = Hy we have, from Theorem 3.4 with p = 2, that
) g, d-1
W = s7llagsony S C- R 21 = sl
substituting this into (3.14) gives
2 ZJr@
I = srlly < CR2T 2 (I gy I = sl
cancelling the factor |[f — s/||, gives

o, d—1
1 = srlly <C -2 ][]y (3.17)

Substituting this inequality into the results of Theorem 3.4, namely (3.11) and (3.12),
proves the theorem. [

Note. Due to the norm equivalence of native spaces and Sobolev spaces, we can
recast the error bound (3.17) as

V= 5 llgisny < € 1 sy
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where 2 = o +d — 1 and where the constant Cis independent of 4. Thus, as
a by-product, our analysis provides a useful convergence result for the case where the
interpolation error is measured in an appropriate Sobolev space norm.

Corollary 3.9. Assuming the same set up as in Theorem 3.8, we have

) ard=1
W = sl sy SC B2 [l (3.18)

where C is a positive constant independent of h.

Proof. Since f'e Hy,y — Hy, we can appeal to Theorem 2.12 to deduce that there
exists a constant 4 independent of / such that

W =srllp, (s <€ W2 If - srlly-

The proof is completed by substituting (3.17) into the above. [

4. Conclusions

In [9], a numerical investigation into the performance of the ZBF method is
presented. In particular, the numerical evidence strongly suggests that if
e CSPD,,(S"") has a-Fourier decay and f € Hy.y, then the optimal L,-error
bound has the form

If = 7

Lt SC BN gy PE[L 0], (4.1)

for some constant C independent of 4. Comparing this result with our theoretical
error bounds, (3.15) and (3.16), we find that we have complete agreement in the case
of pe(l,2]. However, for p>2, there is gap between the theoretical bound and the
numerically observed bound. Indeed, the authors believe that the task of bridging
this gap that is, replacing the factor % in (3.15) with "%‘, is a challenging puzzle and

one which deserves further investigation.

Remark. Subsequent to the completion of this work we have received the
preprint [12] in which an analysis for RBF interpolation is presented. The analysis
applies to domains which satisfy certain technical conditions. Examples of such
domains include the usual open bounded subsets of RY with the cone condition
(see [4]) and also the unit sphere. The resulting error estimates for the unit sphere
are comparable to those derived in this paper, however our techniques are
different.
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